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Abstract

In this paper we consider the magnetoelastic problem of straight cracks lying along interface of two dissimilar soft

ferromagnetic materials subjected to remote uniform magnetic induction. Based on the Hilbert problem formulation

and the technique of analytical continuation, closed form solution for magnetic fields and both the magnetoelastic

stresses and the Maxwell stresses are obtained. It is found that the singularity of magnetoelastic stresses has similar trig-

log character as those obtained for pure elastic problems which were free from the discontinuous jumps of the magnetic

properties and fields across the interface. For illustrating the use of present approach, the detailed results for a single

crack case are provided and verified by comparison with the existing ones under special cases. The numerical examples

of magnetoelastic stress distribution for different material properties are presented graphically. Expressions of the stress

intensity factors in the vicinity of crack tip and crack opening condition are also derived. It is shown that the crack open

assumption is valid except a limiting range of distance measured from the crack tip. � 2002 Published by Elsevier

Science Ltd.

Keywords: Trig-log character; Critical incident angle

1. Introduction

Due to the rapidly increasing use of composite materials in advanced engineering structure, the damage
tolerance and reliability for the composite structures have been matters of concern. There arose the problem
of finding the stress distribution in bonded dissimilar materials with cracks on the interface. The elastic
problems of straight cracks between dissimilar media under in-plane load and bending have been studied by
England (1965), Rice and Sih (1965), Sih and Rice (1964). They found the stresses near the tips of straight
cracks between dissimilar materials possess trig-log singularity. The fracture mechanics on the tips of in-
terfacial cracks was discussed by Rice (1988). All the above investigators have focused on the interfacial
crack problems with mechanical type of source. Nevertheless, it is still a challenging and interesting study to
determine the magnetic and magnetoelastic fields for two dissimilar materials containing interfacial cracks
subjected to magnetic loading. The general theory of magnetoelastic interactions was developed by Tiersten
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(1964, 1965) and Brown (1966). Several investigators, such as Pao and Yeh (1973), Eringen and Maugin
(1989), have deduced physical models and applications of the magnetoelastic interaction.

For the magnetelastic problems of crack, Shindo (1977, 1980) derived stress intensity factor near the
crack tips and Asanyan (1988) studied the interfacial crack problem based on the linear theory by Pao and
Yeh (1973) and integral transformation. Sabir and Maugin (1996), Fomethe and Maugin (1998) provided
the expression of driving force on the crack tips for soft and hard ferromagnets. The merits of complex
variable method to deal the crack problems have been indicated by Muskhelishvili (1953). This method is
efficient in studying crack problems not only for elastic fields but also for magnetoelastic fields. The author
used the complex variable technique to find the magnetic fields and magnetoelastic stresses distribution of a
soft ferromagnetic material containing a straight crack (Lin and Yeh, 2002).

In the present study, we aim to find the general solution of the magnetoelastic problem with straight
cracks in bonded dissimilar materials. Based upon the technique of complex variable, such as analytic
continuation, the magnetic fields and the magnetoelastic stress functions in each material are obtained in a
closed form. An explicit form of solution is given for a single line crack lying in the interface of bi-material
plate under remote uniform magnetic induction. The stress intensity factors are also provided to present the
singular behavior in the vicinity of crack tip. All the solutions derived here become invalid under the
condition of crack close. The explicit form of expression for the crack open condition is given to find
the critical incident angle of magnetic induction. Variations of magnetoelastic stresses on several param-
eters are displayed graphically to illustrate the use of this paper.

2. Magnetic fields around the interfacial cracks

Two homogeneous, ferromagnetic materials occupy the upper half plane Sþ and lower half plane S�. As
shown in Fig. 1, the magnetic and elastic properties of the material in Sþ and S� are marked by subscripts 1
and 2, respectively. In which, lrj (j ¼ 1, 2) is relative magnetic permeability and kj, Gj denote Lam�ee’s
constants in the corresponding area. As mentioned by Moon (1984), the relative magnetic permeability lrj
of linear soft ferromagnetic materials have order of magnitude 102–105 � 1. If there are straight cracks
lying on the interface of two materials, the imperfect bonded interface can be represented as the sum of L
and L� as indicated in Fig. 1. Here L ¼ L1 þ L2 þ � � � þ Ln is the union of n straight cracks on Lk ¼ ðpk; qkÞ
and L� is union of the rest bonded area. Let the interface be situated on the real axis of the complex plane z

Fig. 1. The line cracks on the partially bonded interface between two dissimilar media.
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(¼ xþ iy) and t be the points located on it. The magnetic induction ðBþ
y Þ1 and ðB�

y Þ2 are specified on the
upper and lower surfaces of L, i.e.

ðBþ
y Þ1 ¼ bþðtÞ on L ð1Þ

ðB�
y Þ2 ¼ b�ðtÞ on L ð2Þ

Furthermore, the boundary conditions of magnetic field (Moon, 1984)I
C
ðHx dxþ Hy dyÞ ¼ 0;

Z
S
ðBxnx þ BynyÞds ¼ 0 ð3Þ

lead the continuity of magnetic on bounded interface L� as

ðHxÞ1 ¼ ðHxÞ2 on L� ð4Þ

ðByÞ1 ¼ ðByÞ2 on L� ð5Þ
with

ðBkÞj ¼ l0lrjðHkÞj k ¼ x; y and j ¼ 1; 2 ð6Þ

where the symbols Bj, Hj and l0 (¼ 4p 	 10�7 N/A2) are magnetic induction, magnetic intensity and a
universal constant, respectively. Those quantities with superscripts þ and � are approached from Sþ and
S�. According to the detailed derivations given by Lin and Yeh (2002), the magnetic boundary conditions
in Eqs. (1), (2), (4) and (5) can be expressed in terms of the complex functions UM

j ðzÞ and XM
j ðzÞ (j ¼ 1, 2) as

UMþ
1 ðtÞ � XM�

1 ðtÞ ¼ �2i
bþðtÞ
l0lr1

on L ð7Þ

UM�
2 ðtÞ � XMþ

2 ðtÞ ¼ �2i
b�ðtÞ
l0lr2

on L ð8Þ

and

UM
1 ðtÞ þ XM

1 ðtÞ ¼ UM
2 ðtÞ þ XM

2 ðtÞ on L� ð9Þ

l0lr1 ½U
M
1 ðtÞ � XM

1 ðtÞ� ¼ l0lr2 ½U
M
2 ðtÞ � XM

2 ðtÞ� on L� ð10Þ

where

UM
j ðzÞ ¼ h0jðzÞ; XM

j ðzÞ ¼ UM
j ðzÞ j ¼ 1; 2 ð11Þ

with

h0jðzÞ ¼ ðHx � iHyÞj ð12Þ

Those quantities with superscript M are related to magnetic fields. The notation UM
j ðzÞ denotes complex

conjugate of the coefficients (not argument) in UM
j ðzÞ. Since Eqs. (9) and (10) may be regarded as the

conditions of analytic continuation of UM
j ðtÞ and XM

j ðtÞ, the functions UM
1 ðtÞ and XM

1 ðtÞ can be solved ex-
plicitly in terms of UM

2 ðtÞ and XM
2 ðtÞ as

UM
1 ðtÞ ¼

lr1 þ lr2
2lr1

UM
2 ðtÞ þ

lr1 � lr2
2lr1

XM
2 ðtÞ ð13Þ
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XM
1 ðtÞ ¼

lr1 � lr2
2lr1

UM
2 ðtÞ þ

lr1 þ lr2
2lr1

XM
2 ðtÞ ð14Þ

which are valid in everywhere of z-plane. On adding and subtracting of Eqs. (7) and (8) and applying Eqs.
(13) and (14) we have

½UM
2 ðtÞ � XM

2 ðtÞ�
þ þ ½UM

2 ðtÞ � XM
2 ðtÞ�

� ¼ f MðtÞ ð15Þ

½UM
2 ðtÞ þ XM

2 ðtÞ�
þ � ½UM

2 ðtÞ þ XM
2 ðtÞ�

� ¼ gMðtÞ ð16Þ
The symbols f MðtÞ and gMðtÞ are in form as

f MðtÞ ¼
�4ilr1

l0ðlr1 þ lr2Þ
bþðtÞ
lr1

�
þ b�ðtÞ

lr2

�
ð17Þ

gMðtÞ ¼ �4i

l0ðlr1 þ lr2Þ
½bþðtÞ � b�ðtÞ� ð18Þ

which must satisfy the H€oolder condition on L. Since Eq. (15) is a non-homogeneous Hilbert problem for the
function UM

2 ðzÞ � XM
2 ðzÞ and Eq. (16) is a Plemelj equation for the function UM

2 ðzÞ þ XM
2 ðzÞ, their solutions

can be obtained as

UM
2 ðzÞ � XM

2 ðzÞ ¼
XMðzÞ
2pi

Z
L

f MðtÞ
XMþðtÞðt � zÞ dt þ XMðzÞQnðzÞ ð19Þ

UM
2 ðzÞ þ XM

2 ðzÞ ¼
1

2pi

Z
L

gMðtÞ
ðt � zÞ dt þ d0 ð20Þ

where the Plemelj function satisfying XMþðtÞ ¼ �XM�ðtÞ on L will be

XMðzÞ ¼
Yn
j¼1

ðz� pjÞ�1=2ðz� qjÞ�1=2 ð21Þ

with the necessary branch cuts and the branch selected such that

lim
z!1

½znXMðzÞ� ¼ 1 ð22Þ

Eq. (21) implies that the near-tip magnetic induction always possesses the inverse square root singularity in
terms of the distance away from the crack tip. This feature would not be affected by the discontinuity of
magnetic permeability jumping across the material interface. The symbol d0 is a constant to be holomorphic
in the whole plane and the function QnðzÞ is a polynomial of degree not greater than n, i.e.

QnðzÞ ¼
Xn
j¼0

cjzj ð23Þ

By the use of Eqs. (13), (14), (19) and (20), the general solutions of UM
j ðzÞ and XM

j ðzÞ (j ¼ 1, 2) can be
expressed in a compact form as

UM
2 ðzÞ ¼

1

4pi

Z
L

gMðtÞ
ðt � zÞ dt þ

XMðzÞ
4pi

Z
L

f MðtÞ
XMþðtÞðt � zÞ dt þ

1

2
d0 þ

1

2
XMðzÞQnðzÞ ð24Þ

XM
2 ðzÞ ¼

1

4pi

Z
L

gMðtÞ
ðt � zÞ dt �

XMðzÞ
4pi

Z
L

f MðtÞ
XMþðtÞðt � zÞ dt þ

1

2
d0 �

1

2
XMðzÞQnðzÞ ð25Þ
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and

UM
1 ðzÞ ¼

1

4pi

Z
L

gMðtÞ
ðt � zÞ dt þ

lr2
4lr1

XMðzÞ
pi

Z
L

f MðtÞ
XMþðtÞðt � zÞ dt þ

1

2
d0 þ

lr2
2lr1

XMðzÞQnðzÞ ð26Þ

XM
1 ðzÞ ¼

1

4pi

Z
L

gMðtÞ
ðt � zÞ dt �

lr2
4lr1

XMðzÞ
pi

Z
L

f MðtÞ
XMþðtÞðt � zÞ dt þ

1

2
d0 �

lr2
2lr1

XMðzÞQnðzÞ ð27Þ

Since the values of relative magnetic permeability lr1 and lr2 for both soft ferromagnetic materials in Sþ

and S� are much higher than that of the air enclosed by cracks, the upper and lower boundary of cracks
may be viewed as insulated surfaces as noted by Lin and Yeh (2002). Thus

bþðtÞ ¼ b�ðtÞ ¼ 0; f MðtÞ ¼ gMðtÞ ¼ 0 ð28Þ

Upon the using of Eqs. (11) and (12) and the magnetic induction B0 ¼ B0x þ iB0y applied at the infinity of
S�, the functions UM

2 ðzÞ and XM
2 ðzÞ for large value of jzj take the form as

UM
2 ðzÞ ¼ CM þO

1

z

� �
; XM

2 ðzÞ ¼ CM þO
1

z

� �
for z � 1 ð29Þ

where

CM ¼ 1

l0lr2
ðB0x � iB0yÞ ð30Þ

By substituting Eqs. (22) and (28) into (24) and (25) then comparing with Eq. (29) yield

cn ¼ CM � CM ¼ �2iB0y

l0lr2
; d0 ¼ CM þ CM ¼ 2B0x

l0lr2
ð31Þ

The remaining n unknowns c0; c1; . . . ; cn�1 in the polynomial PnðzÞ can be found by applying the first part
of Eq. (3) on the contours surrounding each crack Lj. Through the use of Eqs. (11) and (12), such a
requirement can be formulated asZ

Lj

½UMþ
2 ðtÞ þ XM�

2 ðtÞ�dt �
Z
Lj

½UM�
1 ðtÞ þ XMþ

1 ðtÞ�dt ¼ 0 ð32Þ

Alternatively, we can use Eqs. (13) and (14) to rearrange Eq. (32) in the formZ
Lj

½UM
2 ðtÞ

	
� XM

2 ðtÞ�
þ � ½UM

2 ðtÞ � XM
2 ðtÞ�

�

dt ¼ 0 ð33Þ

This is a system of n linear equations which can be used to determine the n unknowns c0; c1; . . . ; cn�1. On the
basis of unique theorem (Muskhelishvili, 1953), the coefficients of z in Eq. (23) are obtained from these
conditions uniquely. Once the magnetic boundary conditions are specified on the crack surfaces, the general
solution to the present problem is reduced to the evaluation of singular integrals with Cauchy-type kernels.

For illustrating the use of above derivation, we consider a crack lying within the range ð�a; aÞ on the
interface as depicted in Fig. 2. By taking n ¼ 1 and ðp1; q1Þ ¼ ð�a; aÞ, the Plemelj function XMðzÞ can be
obtained as

XMðzÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2

p ð34Þ

In Eq. (31), the coefficient d0 remains unchanged but cn reduces to c1 i.e.

C.-B. Lin, H.-M. Lin / International Journal of Solids and Structures 39 (2002) 2807–2826 2811



c1CM � CM ¼ �2iB0y

l0lr2
ð35Þ

Substituting Eqs. (24), (25), (28) into (33) renders

c0 ¼ 0 ð36Þ

After determining all the coefficients in Eqs. (24) and (25), the complex functions U1ðzÞ and U2ðzÞ take the
explicit form

h01ðzÞ ¼ UM
1 ðzÞ ¼

1

l0lr1

lr1
lr2

B0x

�
� iB0yzffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 � a2
p

�
ð37Þ

h02ðzÞ ¼ UM
2 ðzÞ ¼

1

l0lr2
B0x

�
� iB0yzffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 � a2
p

�
ð38Þ

Hence, the magnetic fields are obtained from Eqs. (6), (11) and (12) as

ðHx þ iHyÞ1 ¼
1

l0lr1
ðBx þ iByÞ1 ¼

1

l0lr1

�
lr1
lr2

B0x þ
iB0y�zzffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�zz2 � a2

p
�

ð39Þ

Fig. 2. The far field stresses and magnetic induction on bonded soft ferromagnetic solids with single line crack.

2812 C.-B. Lin, H.-M. Lin / International Journal of Solids and Structures 39 (2002) 2807–2826



in Sþ and

ðHx þ iHyÞ2 ¼
1

l0lr2
ðBx þ iByÞ2 ¼

1

l0lr2
B0x

0
B@ þ iB0y�zzffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�zz2 � a2
p

1
CA ð40Þ

in S�. It is seen that the magnetic field possess the square root singularity in terms of the distance r
measured from the tips of crack. Basing on this singular behavior, it is convenient to define the magnetic
flux intensity factor to quantify the intensification of magnetic energy in the vicinity of the crack tip as

kM ¼ lim
r!0

ffiffiffiffiffi
2r

p
B ð41Þ

where the net magnetic flux B is given by

B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB2

x þ B2
yÞj

q
ðj ¼ 1; 2Þ ð42Þ

Notice that the streamlines of magnetic flux are repelled by cracks with boundary as insulted surfaces for
magnetic fields but will be attracted by ferromagnetic media when applied from air. Therefore, the features
of magnetic fields which are uniform in a thin body as obtained by van de Ven (1984) are quite different
from that in Eqs. (39) and (40). Nevertheless, the magnetic fields in the problem of elliptic inclusion will be
provided in the future study that covers both cases and can be used to confirm the accuracy of their results.

Substituting Eqs. (39), (40) and (42) into (41) and letting z ¼ aþ r, we have

kM ¼ B0y
ffiffiffi
a

p
ð43Þ

For the special case of homogeneous material (lr1 ¼ lr2 ), the solutions (39) and (40) are degenerated to the
same form and are in accordance to the corresponding homogeneous material problem given by Lin and
Yeh (2002). It is reasonable that the magnetic flux intensity factor disappears (i.e. kM ¼ 0) for the problem
of perfect bonding by letting a ¼ 0.

3. Formulations of magnetoelastic fields

For the interface between two materials, the tractions tTyy and t
T
xy will be specified on L, while the stresses

and displacement are required to be continuous on L�, i.e.

ðtTþyy Þ1 � iðtTþxy Þ1 ¼ PþðtÞ on L ð44Þ

ðtT�yy Þ2 � iðtT�xy Þ2 ¼ P�ðtÞ on L ð45Þ
and

ðtTyyÞ1 � iðtTxyÞ1 ¼ ðtTyyÞ2 � iðtTxyÞ2 on L� ð46Þ

ðux þ iuyÞ1 ¼ ðux þ iuyÞ2 on L� ð47Þ
Here the superscript T is used to denote the total stresses. Extending the stress combinations given by Lin
and Yeh (2002) to the regions Sþ and S�, it follows that

ðtxx þ tyyÞTj ¼ ðtxx þ tyyÞj þ ðtxx þ tyyÞMj ð48Þ

and

ðtyy � itxyÞTj ¼ ðtyy � itxyÞj þ ðtyy � itxyÞMj ð49Þ
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where

ðtxx þ tyyÞj ¼ 2½UjðzÞ þ UjðzÞ� þ l0vjh
0
jðzÞh0jðzÞ

ðtxx þ tyyÞMj ¼ l0vjh
0
jðzÞh0jðzÞ

ðtyy � itxyÞj ¼ UjðzÞ þ Xjð�zzÞ þ ðz� �zzÞU0
jðzÞ þ

l0

2
½vjh0jðzÞ � ðvj � 1Þh0jðzÞ�h0jðzÞ

ðtyy � itxyÞMj ¼ l0

2
½vjh0jðzÞ � lrjh

0
jðzÞ�h0jðzÞ

ð50Þ

where j ¼ 1, 2 for z 2 Sþ, S� and the functions UjðzÞ and XjðzÞ are defined as

UjðzÞ ¼ /0
jðzÞ ð51Þ

XjðzÞ ¼ UjðzÞ þ zU0
jðzÞ þ w0

jðzÞ �
l0

2
h0jðzÞh0jðzÞ ð52Þ

In Eqs. (48) and (49), the total stresses are the sum of Maxwell stress with superscript M and mag-
netoelastic stresses. It is noted that the body force terms are dropped in Eq. (50). The corresponding
displacement in the absence of body force terms can be expressed as

2Gðux þ iuyÞj ¼ jj/jðzÞ � z/0
jðzÞ � wjðzÞ �

Gj

ðkj þ 2GjÞ
l0vj

Z
h0jðzÞh0jðzÞdz ð53Þ

where

jj ¼
kj þ 3Gj

kj þ Gj
ð54Þ

The notation vj (¼ lrj � 1, j ¼ 1, 2) are magnetic susceptibility in both half-plane and the symbols ux and uy
are displacements along x and y directions. Using Eqs. (7), (8), (11), (48)–(54) and taking t ¼ �tt, Eqs. (44)–
(47) can be written in form as

Uþ
1 ðtÞ þ X�

1 ðtÞ ¼ PþðtÞ þ 2i
v1

lr1
bþðtÞh01

�ðtÞ on L ð55Þ

U�
2 ðtÞ þ Xþ

2 ðtÞ ¼ P�ðtÞ þ 2i
v2

lr2
b�ðtÞh02

þðtÞ on L ð56Þ

and

U1ðtÞ þ X1ðtÞ ¼ U2ðtÞ þ X2ðtÞ þ A12ðtÞ on L� ð57Þ

1

G1

½j1U1ðtÞ � X1ðtÞ� ¼
1

G2

½j2U2ðtÞ � X2ðtÞ� þ B12ðtÞ on L� ð58Þ

where

A12ðtÞ ¼ l0v2½h02ðtÞ � h02ðtÞ�h02ðtÞ � l0v1½h01ðtÞ � h01ðtÞ�h01ðtÞ ð59Þ

B12ðtÞ ¼
l0

2G1

2G1v1

k1 þ 2G1

h01ðtÞ
�

þ h01ðtÞ
�
h01ðtÞ �

l0

2G2

2G2v2

k2 þ 2G2

h02ðtÞ
�

þ h02ðtÞ
�
h02ðtÞ ð60Þ

In Eq. (58), only the derivatives of displacement with t are required to be continuous across L�, i.e.
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oux
ot

�
þ i

ouy
ot

�
1

¼ oux
ot

�
þ i

ouy
ot

�
2

ð61Þ

The functions U1ðtÞ and X1ðtÞ can be solved explicitly in terms of U2ðtÞ and X2ðtÞ as

U1ðtÞ ¼
G2 þ j2G1

G2ð1þ j1Þ
U2ðtÞ þ

G2 � G1

G2ð1þ j1Þ
X2ðtÞ þ

1

ð1þ j1Þ
½A12ðtÞ þ G1B12ðtÞ� ð62Þ

X1ðtÞ ¼
j1G2 � j2G1

G2ð1þ j1Þ
U2ðtÞ þ

j1G2 þ G1

G2ð1þ j1Þ
X2ðtÞ þ

1

ð1þ j1Þ
½j1A12ðtÞ � G1B12ðtÞ� ð63Þ

these equations are valid everywhere in the z-plane and can be substituted into Eqs. (55) and (56) to obtain

½U2ðtÞ þ X2ðtÞ�þ þ a½U2ðtÞ þ X2ðtÞ�� ¼ f ðtÞ ð64Þ

½U2ðtÞ � aX2ðtÞ�þ � ½U2ðtÞ � aX2ðtÞ�� ¼ gðtÞ ð65Þ

where

f ðtÞ ¼ G2ð1þ j1Þ
G2 þ j2G1

PþðtÞ
�

þ 2i
v1

lr1
bþðtÞh01

�ðtÞ
�
þ G1ð1þ j2Þ
G2 þ j2G1

P�ðtÞ
�

þ v2

lr2
b�ðtÞh02

þðtÞ
�

� G2

G2 þ j2G1

fAþ
12ðtÞj1A�

12ðtÞ þ G1½Bþ
12ðtÞ � B�

12ðtÞ�g ð66Þ

gðtÞ ¼ G2ð1þ j1Þ
G2 þ j2G1

PþðtÞ
�

� P�ðtÞ þ 2i
v1

lr1
bþðtÞh01

�ðtÞ
�

� v2

lr2
b�ðtÞh02

þðtÞ
��

� G2

G2 þ j2G1

fAþ
12ðtÞ þ j1A�

12ðtÞ þ G1½Bþ
12ðtÞ � B�

12ðtÞ�g ð67Þ

must satisfy the H€oolder condition on L. The parameter a is

a ¼ G1 þ j1G2

G2 þ j2G1

ð68Þ

4. Solutions of magnetoelastic fields

Knowing that Eq. (64) is a non-homogeneous Hilbert equation for U2ðtÞ þ X2ðtÞ and Eq. (65) is a Plemelj
equation for U2ðtÞ � aX2ðtÞ, they have solutions as

U2ðtÞ þ X2ðtÞ ¼
X ðzÞ
2pi

Z
L

f ðtÞ
XþðtÞðt � zÞ dt þ X ðzÞRnðzÞ ð69Þ

U2ðtÞ � aX2ðtÞ ¼
1

2pi

Z
L

gðtÞ
t � z

dt þ e0 ð70Þ

where the Plemelj function satisfying XþðtÞ ¼ �aX�ðtÞ can be expressed as

X ðzÞ ¼
Yn
j¼1

ðz� pjÞ�1=2þibðz� qjÞ�1=2�ib ð71Þ
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which provides the necessary branch cut then is selected such that

lim
z!1

½znX ðzÞ� ¼ 1 ð72Þ

In Eq. (71), the exponent b is defined as

b ¼ 1

2p
log a ð73Þ

The function RnðzÞ is a polynomial of z with degree not greater than n, i.e.

RnðzÞ ¼
Xn
j¼0

sjzj ð74Þ

and e0 that is holomorphic everywhere in the z-plane is a constant. By applying Eqs. (62), (63), (68)–(70),
the general solutions of the four unknown functions UjðtÞ, XjðtÞ, (j ¼ 1, 2) can be rearranged into a
compact form

U1ðzÞ ¼
ðG2 þ G1j2Þ½G2ð1þ j1ÞF1ðzÞ þ G1ð1þ j2ÞF2ðzÞ�

G2ð1þ j1Þ½G1ð1þ j2Þ þ G2ð1þ j1Þ�
þ A12ðzÞ þ G1B12ðzÞ

ð1þ j1Þ
ð75Þ

X1ðzÞ ¼
G2ð1þ j1ÞðG1 þ G2j1ÞF1ðzÞ � G1ð1þ j2ÞðG2 þ G1j2ÞF2ðzÞ

G2ð1þ j1Þ½G1ð1þ j2Þ þ G2ð1þ j1Þ�
þ j1A12ðzÞ � G1B12ðzÞ

ð1þ j1Þ
ð76Þ

and

U2ðzÞ ¼
ðG1 þ G2j1ÞF1ðzÞ þ ðG2 þ G1j2ÞF2ðzÞ

G1ð1þ j2Þ þ G2ð1þ j1Þ
ð77Þ

X2ðzÞ ¼
ðG2 þ G1j2Þ½F1ðzÞ � F2ðzÞ�
G1ð1þ j2Þ þ G2ð1þ j1Þ

ð78Þ

where

F1ðzÞ ¼
X ðzÞ
2pi

Z
L

f ðtÞ
XþðtÞðt � zÞ dt þ X ðzÞRnðzÞ ð79Þ

F2ðzÞ ¼
1

2pi

Z
L

gðtÞ
t � z

dt þ e0 ð80Þ

and A12ðzÞ and B12ðzÞ are obtained from Eqs. (59) and (60) by letting t ¼ z in those equations.
Following the procedure provided by Lin and Yeh (2002) for homogeneous material with a straight

crack, the functions U2ðzÞ and X2ðzÞ at infinity take the form as

U2ðzÞ ¼ C þ 1

2l0

1

4

 
� v2

l2
r2

!
ðB2

0x þ B2
0yÞ þO

1

z

� �
for jzj � 1 ð81Þ

X2ðzÞ ¼ C þ C0 � 1

2l0

1

4

 "
� v2

l2
r2

!
ðB2

0x þ 4iB0xB0y � 3B2
0yÞ
#
þO

1

z

� �
for jzj � 1 ð82Þ

where

C ¼ 1

4
ðr1

xx þ r1
yy Þ2 þ i

2G2x1
2

1þ j2

; C0 ¼ � 1

2
ðr1

xx � r1
yy � 2is1xy Þ2 ð83Þ
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here the symbols ðr1
xx Þ2, ðr1

yy Þ2 and ðs1xy Þ2 are the normal stresses along x and y directions and shear stress at
infinity and x1

2 denotes the rotation at infinity in S� as referred to Fig. 2. From the viewpoint of force
equivalent, the stress components r1

yy and s1xy are continuous across the interface, i.e. ðr1
yy Þ1 ¼ ðr1

yy Þ2,
ðs1xy Þ1 ¼ ðs1xy Þ2, but the component r1

xx is not. Since the component r1
xx may jump across the interface (i.e. x-

axis), we now express C and C0 in terms of the stresses along x and y directions rather than the principal
stresses r1

1 and r1
2 given by Lin and Yeh (2002). Nevertheless, both expressions will be coincident for the

homogeneous material case.
The coefficient sn in Eq. (74) and constant e0 in Eq. (70) can be found by applying the Eqs. (81) and (82)

at infinity. In addition, the remaining n unknowns s0; s1; . . . ; sn�1 in the polynomial RnðzÞ can be determined
from the conditions that the displacements must be single valued, i.e., the displacement must revert to its
original values while the point z describes a contour around a given segment, say Lj of jth crack. In order to
express such a requirement in a mathematical form, we take the derivative of displacement on the upper
surfaces of cracks and use Eqs. (51)–(53) to obtain

½u0xðtÞ þ iu0yðtÞ�
þ
1 ¼ 1

2G1

j1U
þ
1 ðtÞ

��
� X�

1 ðtÞ �
l0

2
h01

�ðtÞh01
�ðtÞ � G1

k1 þ 2G1

l0v1h
0þ
1 ðtÞh01

þðtÞ
��

for t 2 L

ð84Þ

Similarly, the derivative of displacement ½u0xðtÞ þ iu0yðtÞ�
�
2 in lower surface also can be obtained by replacing

1, þ and � with 2, � and þ in Eq. (84). Thus, the requirement that the displacement must be single valued
is equivalent to

1

2G1

Z
Lj

j1U
þ
1 ðtÞ

�
� X�

1 ðtÞ �
l0

2
h01

�ðtÞh01
�ðtÞ � G1

k1 þ 2G1

l0v1h
0þ
1 ðtÞh01

þðtÞ
�
dt

� 1

2G2

Z
Lj

j2U
�
2 ðtÞ

�
� Xþ

2 ðtÞ �
l0

2
h02

þðtÞh02
þðtÞ � G2

k2 þ 2G2

l0v2h
0�
2 ðtÞh02

�ðtÞ
�
dt ¼ 0 ð85Þ

for j ¼ 1; 2; . . . ; n. The substitution of Eqs. (62) and (63) into (85) and the use of Eqs. (7), (8), (11) and (28)
yield Z

Lj

½j1ðG2

�
þ j2G1Þ½Uþ

2 ðtÞ � U�
2 ðtÞ� þ ðG1 þ j1G2Þ½Xþ

2 ðtÞ � X�
2 ðtÞ�

þ l0G1

2
½h02

þðtÞh02
þðtÞ � h02

�ðtÞh02
�ðtÞ� þ l0G2j1

2
½h01

þðtÞh01
þðtÞ � h01

�ðtÞh01
�ðtÞ�

�
dt ¼ 0 ð86Þ

This is a system of n linear equation which can be used to solve the n unknowns s0; s1; . . . ; sn�1.
Basing on the unique theorem (Muskhelishvili, 1953), these conditions determine the coefficients of z in

Eq. (74) uniquely.
For the illustrating case of a single crack lying within the range ð�a; aÞ on the interface as shown in Fig.

2, we take n ¼ 1 and ðp1; q1Þ ¼ ð�a; aÞ on Eq. (71) to obtain the Plemelj function X ðzÞ as

X ðzÞ ¼ ðzþ aÞ�ð1=2Þþibðz� aÞ�ð1=2Þ�ib ð87Þ

Since the magnetic induction and stresses are applied at infinity, the using of Eqs. (7), (8), (11), (17), (18),
(28) and (59) for a cut free from surface tractions yields

PþðtÞ ¼ P�ðtÞ ¼ 0; Aþ
12ðtÞ ¼ A�

12ðtÞ ¼ 0 ð88Þ
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Applying the following approximations

1

XþðtÞ ¼ t � 2ibaþO
1

t

� �
;

1

t � z
¼ 1

t
þ z
t2
þO

1

t3

� �
for jtj � 1 ð89Þ

and using Eqs. (11), (37), (38), (66), (67) and (88), we have

X ðzÞ
2pi

Z
L

f ðtÞ
XþðtÞðt � zÞ dt ¼ �X ðzÞ

2pi
G1G2

G2 þ j2G1

Z
C

B12ðtÞ
XþðtÞðt � zÞ dt ¼ ðz� 2ibaÞU ð90Þ

1

2pi

Z
L

gðtÞ
t � z

dt ¼ � 1

2pi
G1G2

G2 þ j2G1

Z
C

B12ðtÞ
ðt � zÞ dt ¼ U ð91Þ

where C is a close loop surrounding L and

U ¼ � 1

2l0

G1G2

G2 þ j2G1

2v1

1

k1 þ 2G1

��(
� 1

k2 þ 2G2

�
þ G2 � G1

G1G2

�
B2

0x

þ 2v1

1

l2
r1

1

k1 þ 2G1

 "
� 1

l2
r2

1

k2 þ 2G2

!
þ
G1l2

r1
� G2l2

r2

l2
r1
l2
r2
G1G2

#
B2

0y þ i
2ðG2lr2 � G1lr1Þ

lr1l
2
r2

B0xB0y

)
ð92Þ

The coefficients s1 and e0 can be determined by substituting Eqs. (79), (80), (90) and (91) into Eqs. (77) and
(78) and comparing with Eqs. (81) and (82). This gives

s1 ¼ C þ C þ C0 þ 1

2l0

1

 
� 4v2

l2
r2

!
ðB2

0y � iB0xB0yÞ � U ð93Þ

e0 ¼ C � aðC þ C0Þ þ 1

8l0

1

 
� 4v2

l2
r2

!
½ð1þ aÞB2

0x þ 4iaB0xB0y þ ð1� 3aÞB2
0y � � U ð94Þ

Eq. (86) for the requirement of single-valued displacement leads

Z
C

j1ðG2

�
þ j2G1ÞU2ðfÞ þ ðG1 þ j1G2ÞX2ðfÞ þ

l0G1

2
h02ðfÞh02ðfÞ þ

l0G2j1

2
h01ðfÞh01ðfÞ

� l0v2G1G2j1

k2 þ 2G2

h02ðfÞh02ðfÞ �
l0v1G1G2

k1 þ 2G1

h01ðfÞh01ðfÞ
�
df ¼ 0 ð95Þ

Thus, the insertion of Eqs. (11), (37), (38), (77) and (78) into (95) yields

s0 þ U ¼ �2ibaðs1 þ UÞ ð96Þ

The complex functions F1ðzÞ and F2ðzÞ then can be rearranged as

F1ðzÞ ¼ X ðzÞs�1ðz� 2ibaÞ ð97Þ

F2ðzÞ ¼ e�0 ð98Þ
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where

s�1 ¼ C þ C þ C0 þ 1

2l0

1

 
� 4v2

l2
r2

!
ðB2

0y � iB0xB0yÞ � C þ C þ C0 þ 1

2l0

ðB2
0y � iB0xB0yÞ ð99Þ

e�0 ¼ C � aðC þ C0Þ þ 1

8l0

1

 
� 4v2

l2
r2

!
½ð1þ aÞB2

0x þ 4iaB0xB0y þ ð1� 3aÞB2
0y �

� C � aðC þ C0Þ þ 1

8l0

½ð1þ aÞB2
0x þ 4iaB0xB0y þ ð1� 3aÞB2

0y � ð100Þ

It is noted that the property lr2 ¼ v2 þ 1 � 1 of soft ferromagnetic materials has been used in the final
approximations of these equations. Having completed the solution of F1ðzÞ and F2ðzÞ in Eqs. (97) and (98),
we can obtain the functions UjðzÞ and XjðzÞ (j ¼ 1, 2) in Eqs. (75)–(78), the magnetoelastic stresses and the
Maxwell stress in Eq. (50) explicitly. In the special case for homogeneous material, i.e. a ¼ 1, the complex
functions and stresses obtained here reduce to that given by Lin and Yeh (2002). For another special case of
pure elastic problem by dropping all magnetic terms, the degenerated stresses are identical to that provided
by Rice and Sih (1965). By the use of Eqs. (37), (38), (50)–(52), (75)–(78), (97) and (98), the magnetoelastic
stresses on both side of the bonded surface are

ðtyy � itxyÞ1 ¼
s�1ðz� 2ibaÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 � a2
p zþ a

z� a

� �ib

þ 1

2l0l2
r2

B2
0x

(
þ 4v2

"
� ð2v1 þ 1Þ

l2
r2

l2
r1

#
B2

0yz
2

z2 � a2

� i2ðv2 � 1Þ B0xB0yzffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2

p
)

for z 2 L� ð101Þ

and

ðtyy � itxyÞ2 ¼
s�1ðz� 2ibaÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 � a2
p zþ a

z� a

� �ib

þ 1

2l0l2
r2

B2
0x

(
þ ð2v2 � 1Þ

B2
0yz

2

z2 � a2

� i2ðv2 � 1Þ B0xB0yzffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2

p
)

for z 2 L� ð102Þ

Thus, the total stresses on the bonded surface are found to be

ðtyy � itxyÞT1 ¼ ðtyy � itxyÞT2

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2

p s�1ðz
"

� 2ibaÞ zþ a
z� a

� �ib

� 2iv2B0y

l0l2
r2

B0xz
�

þ i
B0yz2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2

p
�#

for z 2 L� ð103Þ

which satisfy Eq. (46) then can be used to guarantee the exactness of the present solution. From Eqs. (101)
and (102), we find that the tangential magnetoelastic stresses are continuous across the bonded surface but
larger normal magnetoelastic stress tyy appears in the surface of smaller magnetic permeability (suscepti-
bility) material. The substitutions of ðtyyÞTj obtained in Eqs. (103) and (50) into (48) give rise to
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ðtxxÞT2 ¼ gðtxxÞT1 þ
ð3þ gÞa � ð3g þ 1Þ

1þ a
tTyy þ CB2

0x þ D
B2

0yz
2

z2 � a2
ð104Þ

where

g ¼ G2ðj1 þ 1Þ
G1ðj2 þ 1Þ ð105Þ

and

C ¼ 1

l0l2
r2

2j2
2 þ 5j2 þ 1

ð1þ j2Þ2
v2

"
� G2

G1

2j2
1 þ 5j1 þ 1

ð1þ j1Þð1þ j2Þ
v1 þ

1

2ð1þ j2Þ
1

�
� G2

G1

�#
ð106Þ

D ¼ 1

l0l2
r2
ð1þ j2Þ

G2ð1þ j2Þð2j2 � 3Þ � G1ðj2 � 1Þ
2G1ð1þ j2Þ

v2

�
þ 1

2

�

� G2

l0l2
r1
G1ð1þ j2Þ

2j2
1 þ 3j1 � 1

1þ j1

v1

�
� 1

2

�
ð107Þ

This equation indicates the jump of ðtxxÞT which is similar to that found by Rice and Sih (1965) for pure
elastic loading.

The stress intensity factors at z ¼ a are defined as (Rice and Sih, 1965)

k1 � ik2 ¼ 2
ffiffiffi
2

p
epb lim

z!a
ðz� aÞ

1
2
þibU1ðzÞ ð108Þ

where

k1 ¼
ðs�1R þ 2bs�1IÞ cosðb ln 2aÞ þ ð2bs�1R � s�1IÞ sinðb ln 2aÞ

cosh pb

ffiffiffi
a

p
ð109Þ

k2 ¼
ð2bs�1R � s�1IÞ cosðb ln 2aÞ � ðs�1R þ 2bs�1IÞ sinðb ln 2aÞ

cosh pb

ffiffiffi
a

p
ð110Þ

Here the notations s�1R and s�1I are the real and imaginary parts of s�1. The stress intensity factors that defined
in Eq. (108) are introduced to measure the local energy intensification in the vicinity of crack tips. As
referred to the stresses ðtyyÞj (j ¼ 1, 2) in Eqs. (101) and (102), the term B2

0yz
2=ðz2 � a2Þ of 1=r singularity is

negligible as compared to those terms of 1=
ffiffi
r

p
in the measurable range. Here r is the distance measured

from crack tip as shown in Fig. 2. Therefore, the definition in Eq. (108) has presented the dominant singular
behavior in the vicinity of crack tip. Such a result is similar to that remarked by Lin and Yeh (2002) for
homogeneous medium and will be illustrated in the following paragraph. For special case of a homoge-
neous medium under remote uniform magnetic induction, the stress intensity factors can be obtained by
taking a ¼ 1 in Eq. (68), C ¼ C0 ¼ 0 in Eq. (83) and using Eqs. (73) and (99). It yields

ðkI � ikIIÞ �
ffiffiffi
a

p

2l0

ðB2
0y � iB0xB0yÞ ð111Þ

which is consistent with that derived by Lin and Yeh (2002). For another special case of bounded dissimilar
media under pure mechanical loading, the results presented here also can be reduced to that found by Rice
and Sih (1965) by dropping all the terms related to magnetic fields. It is worthy to mention that several
earlier authors, such as Shindo (1977) and Asanyan (1988), have considered the perturbed magnetic field
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induced by the coupling between the deformations and the magnetic fields in the undeformed state. The
perturbed magnetic fields possess singularity of 1=

ffiffi
r

p
but the magnetic fields in the original undeformed

state were given to be uniform. Therefore, the perturbed fields are significant in the vicinity of crack tips
despite of the assumption that they are much smaller than the original field. Even if the perturbed magnetic
fields have the same order of singularity as those in Eqs. (39) and (40), they are much smaller than the
magnetic fields obtained here then can be negligible in the present study.

The crack opening condition can be formulated as

Z t

�a
u0rðt0Þdt0 P 0 for t 2 L ð112Þ

Here the kernel u0rðtÞ is the difference between the displacement derivatives of upper and lower surfaces. For
the present problem, it is

u0rðtÞ ¼ Imf½u0xðtÞ þ iu0yðtÞ�
þ � ½u0xðtÞ þ iu0yðtÞ�

�g ð113Þ

where ½u0xðtÞ þ iu0yðtÞ�
þ
is defined in Eq. (84). Referring to the derivations of Eqs. (85) and (86) and making

use of Eqs. (73), (75)–(78), (97) and (98), we find the crack opening condition in Eq. (112) is equivalent to

Im
ðG1 þ j1G2Þs�1

2G1G2a
ðt0

�
þ aÞ

1
2
þibðt0 � aÞ

1
2
�ib

�����
t

�a
¼ G1 þ j1G2

2G1G2

ffiffiffi
a

p js�1j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � t2

p
cos b log

aþ t
a� t

�
þ h
�
> 0 for jtj6 a

ð114Þ

where js�1j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s�21R þ s�21I

p
and h ¼ tan�1ðs�1I=s�1RÞ denote the amplitude and argument of s�1. The crack opening

condition in Eq. (114) leads

1

expðhþsgnðbÞp=2
b Þ þ 1

6
d
2a

6
1

expðh�sgnðbÞp=2
b Þ þ 1

ð115Þ

for the range 06 d=2a6 1 of interface crack. Here the symbol sgnðbÞ which indicates the sign of b is defined
as þ and � for b P and <0, respectively. For the case that only the pure mechanical loads r1

yy and r1
xy are

applied at infinity, the angle h becomes � tan�1ðs1xy=r1
yy Þ and Eq. (114) in the vicinity of right tip (i.e. t ! a)

is identical to that given by Rice (1988). It is convenient to introduce the distance dð¼ t þ aÞ measured from
the left end of crack tip.

5. Numerical illustration and discussion

Since the main concern of the present paper is focused on the effect of magnetic induction, the effects of
applied stresses r1

xx , r1
yy and s1xy that have been well studied are dropped in all the illustrative figures. In the

absence of mechanical loading, the angle h becomes to c � p=2 with the incident angle of magnetic in-
duction c ¼ tan�1ðB0y=B0xÞ as shown in Fig. 2. Thus, the variation of the range of d=2a in Eq. (115) on the
incident angle c for various a are plotted in Fig. 3a and b. In these figures, the range of a should lying within
the physically practical range 1=3 < a < 3 as derived by England (1965). For each value of a, the upper
bound for available range of d=2a is provided in Fig. 3a and the lower bound is given in Fig. 3b. That is, the
crack will close for the area above the curves in Fig. 3a or below the curves in Fig. 3b for each a. It is found
that the crack surface near the tips will come into contact except that both materials have the same elastic
properties (i.e. a ¼ 1). Nevertheless, the crack closing will occur only on a very restrictive region near the
tips. From the practical viewpoint, we can assign a physical detectable scale to check the crack opening
condition. For example, the dash lines of 1� d=2a and d=2a equal to 0.0005 as remarked in Fig. 3a and b
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can be adopted to examine the crack opening. The critical incident angle ccr1 is obtained on the interaction
of each curve with the dashed line. For each curve, the part beyond the dashed line in Fig. 3a and below the
dashed in Fig. 3b are unavailable due to that the crack opening condition is violated.

The comparison of magnetoelastic stress tyy and Maxwell stress tMyy is displayed in Fig. 4. It is noted that
the magnitude of the magnetoelastic stress depends on a but the Maxwell stress is not. Furthermore, the
former is much higher than the latter in the moderate range due to that the Maxwell stress has 1=r sin-
gularity while leaving the tip a distance r and decays more rapidly than the magnetoelastic stress. Since the
term B2

0yz
2=ðz2 � a2Þ of tyy in Eqs. (101) and (102) has the same order of magnitude as tMyy , it is guaranteed

that the definition of stress intensity factor in Eq. (108) is adequate as mentioned above.
The variation of magnetoelastic stresses tyy , txy on the distance r are plotted in Figs. 5 and 6. In these

figures, r is measured away from the right tip (i.e. z ¼ a) of crack along positive real axis and the value of a
is taking to be 2 for illustration. It is also noted that the stresses shown here are in dimensionless form by
dividing with B2

0=2l0. The typical magnetic induction B0 ¼ 1 T will induced magnetic stress B2
0=2l0 ¼ 58 psi

Fig. 3. The position of crack open condition under various incident angle c and a: (a) upper bound and (b) lower bound.
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as remarked by Moon (1984). It is found that, when c approaches to zero, the stresses decrease rapidly.
Such a feature indicates that the component B0x has no contribution on the singularity of magnetoelastic
stress near the crack tip.

Figs. 7 and 8 display the variation of magnetoelastic stresses on the incident angle c. Since negative tyy
may accompany the contact of the crack surfaces in the vicinity of tip, the parts of curves lying below
tyy ¼ 0 are unavailable. Therefore, we can define the critical angle c�cr as the intersection of the curves and
the line of zero tyy .

The values of ccr and c�cr under various conditions are listed in Table 1. In which, the parameter d0 is
defined as 2a� d to measure the distance from the right tip of crack as depicted in Fig. 2 and the values of

Fig. 4. The variation of non-dimensional magnetoelastic stress tyy=ðB2
0=2l0Þ and Maxwell stress tMyy in bond with r.

Fig. 5. The non-dimensional normal magnetoelastic stress tyy=ðB2
0=2l0Þ in bond.
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magnetic susceptibility vj (j ¼ 1, 2) are taken to be 1000. This table provides a upper bound for the
available range of c for a > 1 and lower bound for a < 1. From this table, both the critical angles ccr and c�cr
monotonically increase with d0=a or r=a, respectively. It is interpreted that the point of checking the crack
opening or stress condition closer to the crack tip will lead more restricted available range.

Since the parameters d0 and r are the distance measured from crack tip toward the interior and exterior of
crack, the critical angles ccr and c�cr basing on different parameter cannot compare with each other. We find
that c�cr obtained from r=a ¼ 0:001 is approximately equal to ccr that from d0=a ¼ 0:01. It is remarked that
ccr is used to confirm the crack opening then to provide the available range of angle c for the present study.
Nevertheless, an available scheme for incident angle of the magnetic induction is provided in Table 1.

Fig. 6. The non-dimensional shear magnetoelastic stress txy=ðB2
0=2l0Þ in bond.

Fig. 7. The variation of non-dimensional magnetoelastic stress tyy=ðB2
0=2l0Þ in bond with c.
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6. Conclusions

Basing upon the Hilbert problem formulation and the technique of analytic continuation, a general
solution for the magnetoelastic problem of straight cracks in bonded dissimilar materials is obtained. In
order to illustrate the application of the present study, detailed results are given for a single line crack case.
By use of the solved magnetoelastic stress functions, the stress intensity factors near the crack tip and the
crack opening condition are also provided. For different values of the ratio between the elastic properties of
two materials, the magnetoelastic stress distribution has been displayed with figures. The trig-log feature of
the magnetoelastic stresses is found just like that of pure elastic case. Comparison with the solution of the
special case can guarantee the solution presented here is exact and general. The critical incident angle of
magnetic induction should be obtained based on the requirement of crack opening assumption to define the
available range of the present study. It is remarked that surface contact in a restricted range near the crack
tip is unavoidable.
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