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Abstract

In this paper we consider the magnetoelastic problem of straight cracks lying along interface of two dissimilar soft
ferromagnetic materials subjected to remote uniform magnetic induction. Based on the Hilbert problem formulation
and the technique of analytical continuation, closed form solution for magnetic fields and both the magnetoelastic
stresses and the Maxwell stresses are obtained. It is found that the singularity of magnetoelastic stresses has similar trig-
log character as those obtained for pure elastic problems which were free from the discontinuous jumps of the magnetic
properties and fields across the interface. For illustrating the use of present approach, the detailed results for a single
crack case are provided and verified by comparison with the existing ones under special cases. The numerical examples
of magnetoelastic stress distribution for different material properties are presented graphically. Expressions of the stress
intensity factors in the vicinity of crack tip and crack opening condition are also derived. It is shown that the crack open
assumption is valid except a limiting range of distance measured from the crack tip. © 2002 Published by Elsevier
Science Ltd.

Keywords: Trig-log character; Critical incident angle

1. Introduction

Due to the rapidly increasing use of composite materials in advanced engineering structure, the damage
tolerance and reliability for the composite structures have been matters of concern. There arose the problem
of finding the stress distribution in bonded dissimilar materials with cracks on the interface. The elastic
problems of straight cracks between dissimilar media under in-plane load and bending have been studied by
England (1965), Rice and Sih (1965), Sih and Rice (1964). They found the stresses near the tips of straight
cracks between dissimilar materials possess trig-log singularity. The fracture mechanics on the tips of in-
terfacial cracks was discussed by Rice (1988). All the above investigators have focused on the interfacial
crack problems with mechanical type of source. Nevertheless, it is still a challenging and interesting study to
determine the magnetic and magnetoelastic fields for two dissimilar materials containing interfacial cracks
subjected to magnetic loading. The general theory of magnetoelastic interactions was developed by Tiersten
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(1964, 1965) and Brown (1966). Several investigators, such as Pao and Yeh (1973), Eringen and Maugin
(1989), have deduced physical models and applications of the magnetoelastic interaction.

For the magnetelastic problems of crack, Shindo (1977, 1980) derived stress intensity factor near the
crack tips and Asanyan (1988) studied the interfacial crack problem based on the linear theory by Pao and
Yeh (1973) and integral transformation. Sabir and Maugin (1996), Fomethe and Maugin (1998) provided
the expression of driving force on the crack tips for soft and hard ferromagnets. The merits of complex
variable method to deal the crack problems have been indicated by Muskhelishvili (1953). This method is
efficient in studying crack problems not only for elastic fields but also for magnetoelastic fields. The author
used the complex variable technique to find the magnetic fields and magnetoelastic stresses distribution of a
soft ferromagnetic material containing a straight crack (Lin and Yeh, 2002).

In the present study, we aim to find the general solution of the magnetoelastic problem with straight
cracks in bonded dissimilar materials. Based upon the technique of complex variable, such as analytic
continuation, the magnetic fields and the magnetoelastic stress functions in each material are obtained in a
closed form. An explicit form of solution is given for a single line crack lying in the interface of bi-material
plate under remote uniform magnetic induction. The stress intensity factors are also provided to present the
singular behavior in the vicinity of crack tip. All the solutions derived here become invalid under the
condition of crack close. The explicit form of expression for the crack open condition is given to find
the critical incident angle of magnetic induction. Variations of magnetoelastic stresses on several param-
eters are displayed graphically to illustrate the use of this paper.

2. Magnetic fields around the interfacial cracks

Two homogeneous, ferromagnetic materials occupy the upper half plane S* and lower half plane §~. As
shown in Fig. 1, the magnetic and elastic properties of the material in S™ and S~ are marked by subscripts 1
and 2, respectively. In which, u,; (j =1, 2) is relative magnetic permeability and 4;, G; denote Lamé’s
constants in the corresponding area. As mentioned by Moon (1984), the relative magnetic permeability p,,
of linear soft ferromagnetic materials have order of magnitude 10>-10° > 1. If there are straight cracks
lying on the interface of two materials, the imperfect bonded interface can be represented as the sum of L
and L* as indicated in Fig. 1. Here L =L, + L, + - - - + L, is the union of n straight cracks on L, = (pi, qx)
and L* is union of the rest bonded area. Let the interface be situated on the real axis of the complex plane z

S+
A1,Gr,

(+)

S
22,Ga, >

Fig. 1. The line cracks on the partially bonded interface between two dissimilar media.
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(=x +1iy) and ¢ be the points located on it. The magnetic induction (B)), and (B} ), are specified on the
upper and lower surfaces of L, i.e.

(B), =b"() onL (1)
(B,),=b() onL 2)

Furthermore, the boundary conditions of magnetic field (Moon, 1984)

j{(dex + H,dy) =0, /S(anx +Byn,)ds =0 (3)
lead the continuity of magnetic on bounded interface L* as

(Ho), = (Hy), onlL” (4)

(By); = (By), onlL’ ()
with

(Bi); = oty (Hi); k=x,y and j=1,2 (6)

where the symbols B;, H; and p, (= 4n x 1077 N/A?) are magnetic induction, magnetic intensity and a
universal constant, respectively. Those quantities with superscripts + and — are approached from S* and
S~. According to the detailed derivations given by Lin and Yeh (2002), the magnetic boundary conditions
in Egs. (1), (2), (4) and (5) can be expressed in terms of the complex functions be (z) and Qj” (z2)G=1,2)as

PME(1) — QY (1) = —Zim on L (7)

(1) — QY (1) = —22/5’) on I (s)
and

DY (1) + Q' (1) = DY (1) + /(1) on L’ 9)

Mokt [BY(2) — 1 (1)] = pops,, [@ (1) — @'()] on L' (10)
where

V() =Hz), Q)= j=12 (11)
with

W\(z) = (H, —iH,), (12)

Those quantities with superscript M are related to magnetic fields. The notation <I>y (z) denotes complex
conjugate of the coefficients (not argument) in @y (z). Since Egs. (9) and (10) may be regarded as the
conditions of analytic continuation of ®}(¢) and Qﬁ” (), the functions @) (¢) and Q) (¢) can be solved ex-
plicitly in terms of ®)(¢) and Q3'() as

r1+ ) r -~ M
B (1) = F () + 0 (1) (13)

" 1
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r M r + 7
Q' (1) =7 T () + () (14)

1 r

which are valid in everywhere of z-plane. On adding and subtracting of Egs. (7) and (8) and applying Egs.
(13) and (14) we have

(@5 (1) = &' ()] + @5 (1) — ' ()] =" (0) (15)
(@5 (1) + Q' ()] — (@Y (1) + &' (1)] =" (1) (16)
The symbols f™(¢) and g¥(¢) are in form as
o A, bt(@) b ()
0= po (e, + Hy,) { w } an
) = ()~ (1) (18)

Ho (:ur] + :urz)

which must satisfy the Holder condition on L. Since Eq. (15) is a non-homogeneous Hilbert problem for the
function @Y (z) — QY (z) and Eq. (16) is a Plemelj equation for the function @Y (z) + Q3'(z), their solutions
can be obtained as

XM
#Y(e) - O [ s x@0,6) (19)
1
2 () + 0¥ () = 2nl/(§_<z>)dt+do (20)
where the Plemelj function satisfying X**(r) = —X"~(¢) on L will be
X = [ e a) " 1)

J=1
with the necessary branch cuts and the branch selected such that
lim[z"X" (z)] = 1 (22)
Eq. (21) implies that the near-tip magnetic induction always possesses the inverse square root singularity in
terms of the distance away from the crack tip. This feature would not be affected by the discontinuity of

magnetic permeability jumping across the material interface. The symbol d, is a constant to be holomorphic
in the whole plane and the function Q,(z) is a polynomial of degree not greater than n, i.e.

z) = icjzf (23)

By the use of Egs. (13), (14), (19) and (20), the general solutions of <1'Jj” (z) and Qj” (z) =1, 2) can be
expressed in a compact form as ‘

D) (z) = ! / 0 dt+XM(.Z)/ S0 dt+ld0 +1XM(Z)Q,1(Z) (24)

4ni J, (1—2) 4ni J, XMH(8)(t —z) 2 2
o= [ £S5 [P0 e Lo
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and
R 410 ey XY(2) M) [P ey,
') ‘R/L (=% ay, i /LXM+<r><r—z> Attty G )
1 g" () ey XY(2) M) 1 Hry ou
/() 74777:1/L (t—z)dt74,url ! /L XM+(t)(t—z)dt+§d072,urlX (2)0(2) 27)

Since the values of relative magnetic permeability x, and g, for both soft ferromagnetic materials in S*
and S- are much higher than that of the air enclosed by cracks, the upper and lower boundary of cracks
may be viewed as insulated surfaces as noted by Lin and Yeh (2002). Thus

B =b (1) =0, f"(1)=g"(t)=0 (28)

Upon the using of Eqs. (11) and (12) and the magnetic induction By = By, + 1By, applied at the infinity of
S-, the functions @) (z) and Q) (z) for large value of |z| take the form as

1 — 1
(Pgl(z):FM—FO(;), le(z):FM—FO(;) forz > 1 (29)
where
™= B, — 1By, 30
ok, (Bo ov) (30)
By substituting Eqgs. (22) and (28) into (24) and (25) then comparing with Eq. (29) yield
—- —2iB — 2B,
Cy ="M= 220 gy =M M = T (31)
tu():urz :u0:ur2
The remaining n unknowns ¢y, ¢y, . .., ¢, in the polynomial P,(z) can be found by applying the first part

of Eq. (3) on the contours surrounding each crack L;. Through the use of Egs. (11) and (12), such a
requirement can be formulated as

[ 1280+ [ @0+ el wldi=o (32)
Alternatively, we can use Egs. (13) and (14) to rearrange Eq. (32) in the form

[ o0 -2ty - o~ @) yar=o0 (33)
This is a system of # linear equations which can be used to determine the » unknowns ¢, ¢y, . .., ¢,_1. On the

basis of unique theorem (Muskhelishvili, 1953), the coefficients of z in Eq. (23) are obtained from these
conditions uniquely. Once the magnetic boundary conditions are specified on the crack surfaces, the general
solution to the present problem is reduced to the evaluation of singular integrals with Cauchy-type kernels.
For illustrating the use of above derivation, we consider a crack lying within the range (—a, a) on the
interface as depicted in Fig. 2. By taking n =1 and (p;,q1) = (—a, a), the Plemelj function X¥(z) can be
obtained as
1

In Eq. (31), the coefficient d, remains unchanged but ¢, reduces to ¢; i.e.
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Fig. 2. The far field stresses and magnetic induction on bonded soft ferromagnetic solids with single line crack.

e 7 = 2B (35)
/’LO#Q
Substituting Egs. (24), (25), (28) into (33) renders
c=0 (36)

After determining all the coefficients in Eqs. (24) and (25), the complex functions @, (z) and ®,(z) take the
explicit form

1 )z iBO Z
H(z) = ®Y(z) = <AB - 7y> 37
I(Z) ! (Z) tuO,url :urz ‘ 22 — (12 ( )
1 iB() A
h/ — @M — <B . — o4 > 38
) = ) = (B (38)

Hence, the magnetic fields are obtained from Egs. (6), (11) and (12) as

. 1 . 1 U, .lB()E
H.+1iH,), = —— (B, +iB :—(—‘Bx—i-iy) 39
( = o ¢ T WY = (39)



C.-B. Lin, H.-M. Lin | International Journal of Solids and Structures 39 (2002) 2807-2826 2813

in ST and

. 1 . 1 iBy,z
(H, +iH,), = —— (B, +1iB,), = —— | Boy + ——— (40)
! T wop, 2w, L V-
in §~. It is seen that the magnetic field possess the square root singularity in terms of the distance r
measured from the tips of crack. Basing on this singular behavior, it is convenient to define the magnetic
flux intensity factor to quantify the intensification of magnetic energy in the vicinity of the crack tip as

where the net magnetic flux B is given by
B=,/(B:+B]), (j=12) (42)

Notice that the streamlines of magnetic flux are repelled by cracks with boundary as insulted surfaces for
magnetic fields but will be attracted by ferromagnetic media when applied from air. Therefore, the features
of magnetic fields which are uniform in a thin body as obtained by van de Ven (1984) are quite different
from that in Egs. (39) and (40). Nevertheless, the magnetic fields in the problem of elliptic inclusion will be
provided in the future study that covers both cases and can be used to confirm the accuracy of their results.

Substituting Egs. (39), (40) and (42) into (41) and letting z = a + r, we have

KM = BOy\/E (43)

For the special case of homogeneous material (1, = u,,), the solutions (39) and (40) are degenerated to the
same form and are in accordance to the corresponding homogeneous material problem given by Lin and
Yeh (2002). It is reasonable that the magnetic flux intensity factor disappears (i.e. £ = 0) for the problem
of perfect bonding by letting a = 0.

3. Formulations of magnetoelastic fields

For the interface between two materials, the tractions t)T”v and (fy will be specified on L, while the stresses
and displacement are required to be continuous on L*, i.e.

(ty ) —i(t,"), =P"(r) onL (44)

(ty )y =ity )y =P (1) onlL (45)
and

(1)1 —i(tg) = (1), —i(t), on L’ (46)

(e +iuy), = (uy +1u,), on L (47)

Here the superscript 7 is used to denote the total stresses. Extending the stress combinations given by Lin
and Yeh (2002) to the regions ST and S—, it follows that

(b + 1)} = (t 1), + (L + 1)1 (48)

and

(tyy - itxy)_/r = (t,vy - itxy)j + (ty - ny)y (49)
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where

(te + 1), = 2[0;(2) + @, (2)] + mox, 1 (2)h)(2)
(txx t)y)j - :u()th/( )h—()
(
(

i)y = 810+ 9/0) + e 20/ B @) — (o~ DEEIRE 30
ty = ita)}' = E2 1402 — 1 R E)
where j =1, 2 for z € §*, S~ and the functions ®;(z) and Q;(z) are defined as
®,(z) = ¢(z2) (51)
Qi(z) = (2) +2(z) + ¥}(2) - S () (2) (52)

In Egs. (48) and (49), the total stresses are the sum of Maxwell stress with superscript M and mag-
netoelastic stresses. It is noted that the body force terms are dropped in Eq. (50). The corresponding
displacement in the absence of body force terms can be expressed as

26+ i), = 0,6) ~0,6) ~ 1, ~ 5y [ KTz (53)
where
2 +3G;
YTUHG (54

The notation y; (= w,; — 1, j = 1, 2) are magnetic susceptibility in both half-plane and the symbols u, and u,
are displacements along x and y directions. Using Egs. (7), (8), (11), (48)-(54) and taking ¢ = ¢, Eqgs. (44)—
(47) can be written in form as

B (1) + Q (1) = P (1) + 2ilf_lb+(z)h_’,*(z) on L (55)

@5 (1) + Qi (t) = P ()+21u b= (O, (f) onL (56)
and

(pl(l) + .Ql (f) = (pz(t) + Qz(t) -I-Alz(l‘) on L* (57)

1 1 .

a [K1¢1(l) — Ql(l)] = 62 [szsz(t) — Qz(t)] +Blz(t) on L (58)
where

A1) = uosa [y () — Hy(O)]R5(1) — poga [y (2) — By (0)] G (2) (59)

Ball) = g | 2B 0+ O 0~ s |2 b0+ 500 | ) (60

In Eq. (58), only the derivatives of displacement with ¢ are required to be continuous across L*, i.e
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Ou, .Ou, Ou, .Ou,
P St A (Y et i 61
(at“at)l (at“at)z (61)

The functions @, (¢) and Q,(¢) can be solved explicitly in terms of @,(¢) and Q,(¢) as

B (1) = % (1) + %sz + (1+1x1) Un(t) + GiB1a(0)] (62)
Q1) = % By (1) + % (1) + (1+1;<1) k1 41(¢) — Gy By (1)] (63)

these equations are valid everywhere in the z-plane and can be substituted into Egs. (55) and (56) to obtain

@:(0) + 20" +3102(0) + B0] = /1) (64)
[@:(0) — a:(0)]" — [92(0) — 22(0)]” = () (65)
where
10 =L pr 2 i 0] + S o+ B 0]
G + - + -
- o OB + GiBL() — B(0)]) (66)
o) = ZAE8 iy o)+ 28] Lo R (0 - 200 )|
- g M0 + () + B ~ Ba(o)]) (67)
must satisfy the Holder condition on L. The parameter o is
Gl “+ K G2
o= Gt G (68)

4. Solutions of magnetoelastic fields

Knowing that Eq. (64) is a non-homogeneous Hilbert equation for @,(¢) + ©,(¢) and Eq. (65) is a Plemelj
equation for @,(¢) — a€,(¢), they have solutions as

Dy (1) + QD (t) = );STZI) /L X+(tf)((tt) 3 dt + X(2)R,(z) (69)
Dy (1) — (1) = % /L %dr + e (70)

where the Plemelj function satisfying X (f) = —oX(#) can be expressed as

X() =[G p) e g) )

J=1
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which provides the necessary branch cut then is selected such that

lim[z"X(z)] =1 (72)
In Eq. (71), the exponent /5 is defined as
1
p =7 loga (73)
The function R,(z) is a polynomial of z with degree not greater than #, i.e.
Ri(z)=> 57 (74)
=0

and e that is holomorphic everywhere in the z-plane is a constant. By applying Egs. (62), (63), (68)—(70),
the general solutions of the four unknown functions @;(¢), Q;(¢), (j =1, 2) can be rearranged into a
compact form

(G2 + G1K2)[G2(1 + Kl)Fl (Z) + Gl(l + Kz)sz(Z)] Alz(Z) + GlBlz(Z)

P = T T+ k)G + ) + Gall 5 1)) (1+x1) 73)
B G2(1 + Kl)(Gl + GzKl)Fi(Z) — Gl(l + Kz)(Gz + GlKQ)Fé(Z) KlAlz(Z) — GlBlz(Z)
) = Ga(1+ 10)[Gr(1 T ) + Ga(l + w1 T ) e
and
. (G + G )Fi(z) + (G2 + Gii2) B (2)
‘Dz(Z) o G1(1+K2)+G2(1+K1) (77)
(G2 + Gix))[Fi(z) — FK(2)]
QZ(Z) - G](l + Kz) + Gz(l + Kl) (78)
where
A = [ it XORG (19)
B(2) :ﬁ /L %dmeo (80)

and A»(z) and Bi,(z) are obtained from Eqs. (59) and (60) by letting ¢ = z in those equations.
Following the procedure provided by Lin and Yeh (2002) for homogeneous material with a straight
crack, the functions @,(z) and ©,(z) at infinity take the form as

1 1 xn 2 2 1
@2(Z)F+2—'uo<1—32>(30x+30y)+0 ; for |Z|>>1 (81)
Q(z):T—FF—L Loyl (Bi. + 4iByBy, — 3B; )| + O ! for |z| > 1 (82)
: 2y [\ &g, ) o T T O
where
1, o © 2G5 1, o .
F:Z(axx+a}y)2+1 1+K22 , F/:—E(GXX—GW—ZI‘EW)Z (83)
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here the symbols (¢77),, (0};), and (z)), are the normal stresses along x and y directions and shear stress at
infinity and @$° denotes the rotatlon at infinity in S~ as referred to Fig. 2. From the viewpoint of force
equivalent, the stress components oy and t}; are continuous across the interface, ie. (a};), = (a3)),,
(t5)1 = (75y),, but the component o7y is not. Since the component a7y may jump across the interface (i.e. x-
axis), we now express I and I" in terms of the stresses along x and y directions rather than the principal
stresses ¢7° and ¢5° given by Lin and Yeh (2002). Nevertheless, both expressions will be coincident for the
homogeneous material case.

The coefficient s, in Eq. (74) and constant ¢y in Eq. (70) can be found by applying the Egs. (81) and (82)
at infinity. In addition, the remaining n unknowns sq, sy, . .., s,_; in the polynomial R,(z) can be determined
from the conditions that the displacements must be single valued, i.e., the displacement must revert to its
original values while the point z describes a contour around a given segment, say Z; of jth crack. In order to
express such a requirement in a mathematical form, we take the derivative of displacement on the upper
surfaces of cracks and use Eqgs. (51)—(53) to obtain

1 - T NI G AT
=56 { [0 - a0 - B0 0 - ot 0 0]} ror e

e 0) + O] = 5

(84)

Similarly, the derivative of displacement [u; (¢) + i, (¢)], in lower surface also can be obtained by replacing

1, + and — with 2, — and + in Eq. (84). Thus, the requirement that the displacement must be single valued
is equivalent to

1

G I+ /
e |, T o O ()] a

0 - 200 =2 O () -

1

_TG2 Lj [KZ () =0 - %h_l;(t)h_/;(t) — 5 Mooy (t ) ( )} de= (85)

2
ia+2G,

for j =1,2,...,n. The substitution of Egs. (62) and (63) into (85) and the use of Egs. (7), (8), (11) and (28)
yield

/L‘ {[Kl(Gz + 12G1) [ @5 (1) — D3 (0)] + (G1 + 11G2) [2; (1) — 25 (1)]

MGy ot ot AT HoGaK 7 AT
T W ) T 0 0]+ S5 R 0 = T R (0] par =0 (36)
This is a system of n linear equation which can be used to solve the n unknowns sg, sy, ...,8,_1.

Basing on the unique theorem (Muskhelishvili, 1953), these conditions determine the coefficients of z in
Eq. (74) uniquely.

For the illustrating case of a single crack lying within the range (—a, a) on the interface as shown in Fig.
2, we take n =1 and (p1,q1) = (—a,a) on Eq. (71) to obtain the Plemelj function X (z) as

X(z) _ (z + a)*(1/2)+i/3(z _ a)*(l/Z)*i/f (87)

Since the magnetic induction and stresses are applied at infinity, the using of Egs. (7), (8), (11), (17), (18),
(28) and (59) for a cut free from surface tractions yields

PH(0) =P (1) =0, Aj(1) =4,(1) =0 (88)
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Applying the following approximations

. 1 1 1 =z 1
:t—21/3a+0<?), —:?+t_2+o<t_3> for |7 > 1 (89)

X*(¢) t—z

and using Egs. (11), (37), (38), (66), (67) and (88), we have

X(Z) f([) X Z G1G2 / .

- -2 U 90

2mi /L XH(6)(t —z) d 211 Gy + 165Gy Jo X+ (1 dt = (z - 2ifa) (90)
1 (1) 1 GG / B (1)

27 T o di=vu 91

27[1/L l‘—zdt 211 Gy + 1,Gy C (f—z) t ( )

where C is a close loop surrounding L and

1 GG, 1 1 G, -G,
U=-———12 |2 - B
2,[10 G2 + K2G1 {|: 1 (il +2G1 iz +2G2) + G1G2 :| O

2 G G
Béy ( 2lur2 - llurl)BoxBOy} (92)

1 12,

) l 1 1 1 G, 214,
PR W26 12, 7+ 26, 12 12.G1 G

The coefficients s; and ¢, can be determined by substituting Egs. (79), (80), (90) and (91) into Eqgs. (77) and
(78) and comparing with Egs. (81) and (82). This gives

- = 1 4 .
Sl_F—l-F—i-F,—Fﬂ(l— £2>(BZ IBQXBOy)—U (93)
0 2
— T 1 4%2 2 . o)
eg=T—a(l+T)+ S\ T (1 + o) By, + 4i0BoBoy + (1 — 30)B; | — U (94)
0 12

Eq. (86) for the requirement of single-valued displacement leads

[ [1(G2 4 16080 + (G -+ G @) + RO + MR R
C
Hox2 GGkt oy i 11 GG, B
- IO b 0 €) S 0 ()t =0 5)

Thus, the insertion of Egs. (11), (37), (38), (77) and (78) into (95) yields
so+ U = =2ifla(s; + U) (96)
The complex functions Fi(z) and F>(z) then can be rearranged as

Fi(z) = X (2)s%(z — 2ifa) (97)
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where

% =, 77 1 4y, 2 : - =, 77 1 2 :
s = Ir+r+1"+ 2—’[10 — —%2 (BOy — 1BOxBOy) ~I'+TI'+1+ 2_'[10 (B()y — 1B0xBOy) (99)

* = 7 1 47 2 : 2
e, = I — OC(F + F) + 8_'[10 1— - [(1 + OC)BOx + 4IOCB()XB()_V + (1 — 30()Boy]

L)
— = 1 .
~T—al+T)+ T [(1 + 2)Bg, + 4ioBo,By, + (1 — 30)B; ] (100)
0

It is noted that the property w,, =y, + 1> 1 of soft ferromagnetic materials has been used in the final
approximations of these equations. Having completed the solution of Fj(z) and F(z) in Egs. (97) and (98),
we can obtain the functions @;(z) and Q;(z) (j = 1, 2) in Eqgs. (75)—(78), the magnetoelastic stresses and the
Maxwell stress in Eq. (50) explicitly. In the special case for homogeneous material, i.e. « = 1, the complex
functions and stresses obtained here reduce to that given by Lin and Yeh (2002). For another special case of
pure elastic problem by dropping all magnetic terms, the degenerated stresses are identical to that provided
by Rice and Sih (1965). By the use of Eqgs. (37), (38), (50)—(52), (75)—(78), (97) and (98), the magnetoelastic
stresses on both side of the bonded surface are

(b — ity), =3 (ZZ:_Ziff i (= z)iﬁ + 2/13% {Béx + 47 - 21+ 1) ﬁj] ngyz;
—12(y, — l)b%} forzeL” (101)
and
oy ), = SO (2may” L {ng NE
—12(y, — 1)5%} forzelL” (102)
Thus, the total stresses on the bonded surface are found to be
(6 = ity) = (ty — ity);
_ \/zz%—cﬁ [s*f(z -~ 2iga) fZ)iﬁ - 2;2;@ (Bon + l%ﬂ forzel*  (103)

which satisfy Eq. (46) then can be used to guarantee the exactness of the present solution. From Egs. (101)
and (102), we find that the tangential magnetoelastic stresses are continuous across the bonded surface but
larger normal magnetoelastic stress ¢, appears in the surface of smaller magnetic permeability (suscepti-
bility) material. The substitutions of (tw)_f obtained in Egs. (103) and (50) into (48) give rise to
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r r Gane =Gt ) p o BV
(ta)? = n(te)T + — by + CBy +D = (104)
where
Gz(Kl + 1)
_ 105
il Gl(Kz + 1) ( )
and
1 |25+ 51+ 1 Gy 2K+ 5Kk +1 1 ( Gz)
— _ == + 1-—= 106
porz, | (14 k) TG M+ k) (T+m) 2T+ G (109
_ 1 [G2(1+K2)(2K2—3)—G1(K2_I)A +1}
tot, (1 + 1) 2G1(1 + ) )
G2 ZK% + 3K1 -1 1)
B L1 107
uouf,Gl(HKz)( T+ 172 1o

This equation indicates the jump of (z,)" which is similar to that found by Rice and Sih (1965) for pure
elastic loading.
The stress intensity factors at z = a are defined as (Rice and Sih, 1965)

ki — iky = 2V2e™ lim(z — a)* @, (2) (108)
where
~ (s1g +2PBsyy) cos(BIn2a) + (2Bsi — s7;) sin(f1n 2a)
fi= cosh 8 va (109)
k= (2Bsig — s7p) cos(BIn2a) — (sig + 2ps7;) sin(f1n 2a) Vi (110)

cosh f8

Here the notations s} and s}; are the real and imaginary parts of s;. The stress intensity factors that defined
in Eq. (108) are introduced to measure the local energy intensification in the vicinity of crack tips. As
referred to the stresses (z,); (j = 1, 2) in Eqgs. (101) and (102), the term Bj z*/(z* — a*) of 1/r singularity is
negligible as compared to those terms of 1/4/r in the measurable range. Here r is the distance measured
from crack tip as shown in Fig. 2. Therefore, the definition in Eq. (108) has presented the dominant singular
behavior in the vicinity of crack tip. Such a result is similar to that remarked by Lin and Yeh (2002) for
homogeneous medium and will be illustrated in the following paragraph. For special case of a homoge-
neous medium under remote uniform magnetic induction, the stress intensity factors can be obtained by
taking « = 1 in Eq. (68), I' = I = 0 in Eq. (83) and using Eqgs. (73) and (99). It yields

(k} — ikH) =~ Zﬁ (Béy — iBoxB()y) (1 1 1)

Ho
which is consistent with that derived by Lin and Yeh (2002). For another special case of bounded dissimilar
media under pure mechanical loading, the results presented here also can be reduced to that found by Rice
and Sih (1965) by dropping all the terms related to magnetic fields. It is worthy to mention that several
earlier authors, such as Shindo (1977) and Asanyan (1988), have considered the perturbed magnetic field
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induced by the coupling between the deformations and the magnetic fields in the undeformed state. The
perturbed magnetic fields possess singularity of 1/./7 but the magnetic fields in the original undeformed
state were given to be uniform. Therefore, the perturbed fields are significant in the vicinity of crack tips
despite of the assumption that they are much smaller than the original field. Even if the perturbed magnetic
fields have the same order of singularity as those in Eqgs. (39) and (40), they are much smaller than the
magnetic fields obtained here then can be negligible in the present study.

The crack opening condition can be formulated as

t
/u;(t’)dt’>0 fortelL (112)

a

Here the kernel /(¢) is the difference between the displacement derivatives of upper and lower surfaces. For
the present problem, it is

, (t) = Im{[ul, (1) + iue, (0)] " — [a,(0) + 1 (1)] "} (113)

where [u/ (1) + iu_’v(t)]+ is defined in Eq. (84). Referring to the derivations of Egs. (85) and (86) and making
use of Egs. (73), (75)—(78), (97) and (98), we find the crack opening condition in Eq. (112) is equivalent to

(G1 + K1 Gz)ST
2G1G20(

Im

t
(t/+a)§+1/f(t/_a)%1/f:| 1+ K 2| 1| /a2 — 12 cos (ﬁlog +9) >0 for|t|<a

. 2GGy/a

(114)
where |s7| = \/si% + 577 and 0 = tan~' (s}, /s}z ) denote the amplitude and argument of s;. The crack opening
condition in Eq. (114) leads

1 < g o 1
exp(9+sgn([3 7[/2) +1 2a X exp(ﬁ—sgn/g[)’)n/Z) +1

(115)

for the range 0 < 6/2a < 1 of interface crack. Here the symbol sgn() which indicates the sign of f§ is defined
as + and — for f > and <0, respectively. For the case that only the pure mechanical loads (;W and o7} are
applied at infinity, the angle 0 becomes — tan™'(t>°/ a‘y) and Eq. (114) in the vicinity of right tip (i.e. ¢ — a)
is identical to that given by Rice (1988). It is convenient to introduce the distance 0(= t + a) measured from
the left end of crack tip.

5. Numerical illustration and discussion

Since the main concern of the present paper is focused on the effect of magnetic induction, the effects of
applied stresses o7y, 677 and 77} that have been well studied are dropped in all the illustrative figures. In the
absence of mechanical loading, the angle 0 becomes to y — n/2 with the incident angle of magnetic in-
duction y = tan~!(By,/By,) as shown in Fig. 2. Thus, the variation of the range of /2a in Eq. (115) on the
incident angle y for various o are plotted in Fig. 3a and b. In these figures, the range of o should lying within
the physically practical range 1/3 < o < 3 as derived by England (1965). For each value of «, the upper
bound for available range of §/2a is provided in Fig. 3a and the lower bound is given in Fig. 3b. That is, the
crack will close for the area above the curves in Fig. 3a or below the curves in Fig. 3b for each «. It is found
that the crack surface near the tips will come into contact except that both materials have the same elastic
properties (i.e. & = 1). Nevertheless, the crack closing will occur only on a very restrictive region near the
tips. From the practical viewpoint, we can assign a physical detectable scale to check the crack opening
condition. For example, the dash lines of 1 — 6/2a and J/2a equal to 0.0005 as remarked in Fig. 3a and b
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Fig. 3. The position of crack open condition under various incident angle y and o: (a) upper bound and (b) lower bound.

can be adopted to examine the crack opening. The critical incident angle 7., is obtained on the interaction
of each curve with the dashed line. For each curve, the part beyond the dashed line in Fig. 3a and below the
dashed in Fig. 3b are unavailable due to that the crack opening condition is violated.

The comparison of magnetoelastic stress £, and Maxwell stress t% is displayed in Fig. 4. It is noted that
the magnitude of the magnetoelastic stress depends on o but the Maxwell stress is not. Furthermore, the
former is much higher than the latter in the moderate range due to that the Maxwell stress has 1/r sin-
gularity while leaving the tip a distance » and decays more rapidly than the magnetoelastic stress. Since the
term Bj z*/(z* — a*) of 1,, in Egs. (101) and (102) has the same order of magnitude as #;, it is guaranteed
that the definition of stress intensity factor in Eq. (108) is adequate as mentioned above.

The variation of magnetoelastic stresses ¢,,, ., on the distance r are plotted in Figs. 5 and 6. In these
figures, r is measured away from the right tip (i.e. z = a) of crack along positive real axis and the value of «
is taking to be 2 for illustration. It is also noted that the stresses shown here are in dimensionless form by
dividing with B3 /2u,. The typical magnetic induction By = 1 T will induced magnetic stress B /2, = 58 psi
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Fig. 4. The variation of non-dimensional magnetoelastic stress t,,/(B3/2u,) and Maxwell stress #yf in bond with .
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Fig. 5. The non-dimensional normal magnetoelastic stress ¢,,/(B%/24,) in bond.

as remarked by Moon (1984). It is found that, when y approaches to zero, the stresses decrease rapidly.
Such a feature indicates that the component B, has no contribution on the singularity of magnetoelastic
stress near the crack tip.

Figs. 7 and 8 display the variation of magnetoelastic stresses on the incident angle y. Since negative ¢,
may accompany the contact of the crack surfaces in the vicinity of tip, the parts of curves lying below
t,, = 0 are unavailable. Therefore, we can define the critical angle y! as the intersection of the curves and
the line of zero ¢,.

The values of 7, and y!. under various conditions are listed in Table 1. In which, the parameter &' is
defined as 2a — 6 to measure the distance from the right tip of crack as depicted in Fig. 2 and the values of
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Fig. 6. The non-dimensional shear magnetoelastic stress #,,/(B3/2u,) in bond.
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Fig. 7. The variation of non-dimensional magnetoelastic stress #,,/(B3/24,) in bond with 7.

magnetic susceptibility y; (j =1, 2) are taken to be 1000. This table provides a upper bound for the
available range of y for o« > 1 and lower bound for « < 1. From this table, both the critical angles y.. and y?,
monotonically increase with &' /a or r/a, respectively. It is interpreted that the point of checking the crack
opening or stress condition closer to the crack tip will lead more restricted available range.

Since the parameters &' and r are the distance measured from crack tip toward the interior and exterior of
crack, the critical angles y., and y?, basing on different parameter cannot compare with each other. We find
that y*, obtained from r/a = 0.001 is approximately equal to y,, that from ¢'/a = 0.01. It is remarked that
7. 18 used to confirm the crack opening then to provide the available range of angle y for the present study.
Nevertheless, an available scheme for incident angle of the magnetic induction is provided in Table 1.
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Fig. 8. The variation of non-dimensional magnetoelastic stress #,,/(B?/2u,) in bond with 7.

Table 1

The critical incident angle determined from displacement and stress conditions
Critical angle Yar ©) Ve ()

&' Ja = 0.0001 &' Ja = 0.001 §'Ja=0.01 r/a = 0.0001 r/fa=0.001  r/a=0.01

=3 80.79 103.86 126.97 107.36 125.08 146.39
o=2 117.40 131.96 146.54 135.40 145.79 159.08
a=1/2 62.60 48.04 33.46 54.60 34.21 20.92
a=1/3 99.21 76.14 53.03 72.64 54.92 33.61

6. Conclusions

Basing upon the Hilbert problem formulation and the technique of analytic continuation, a general
solution for the magnetoelastic problem of straight cracks in bonded dissimilar materials is obtained. In
order to illustrate the application of the present study, detailed results are given for a single line crack case.
By use of the solved magnetoelastic stress functions, the stress intensity factors near the crack tip and the
crack opening condition are also provided. For different values of the ratio between the elastic properties of
two materials, the magnetoelastic stress distribution has been displayed with figures. The trig-log feature of
the magnetoelastic stresses is found just like that of pure elastic case. Comparison with the solution of the
special case can guarantee the solution presented here is exact and general. The critical incident angle of
magnetic induction should be obtained based on the requirement of crack opening assumption to define the
available range of the present study. It is remarked that surface contact in a restricted range near the crack
tip is unavoidable.
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